7 research outputs found

    Black-Box System Identification for Low-Cost Quadrotor Attitude at Hovering

    Full text link
    The accuracy of dynamic modelling of unmanned aerial vehicles, specifically quadrotors, is gaining importance since strict conditionalities are imposed on rotorcraft control. The system identification plays a crucial role as an effective approach for the problem of the fine-tuning dynamic models for applications such control system design and as handling quality evaluation. This paper focuses on black-box identification, describing the quadrotor dynamics based on experimental setup through sensor preparation for data collection, modelling, control design, and verification stages

    Adaptive Sliding Mode Controller and Observer for Altitude and Attitude Control of a Quadrotor

    No full text
    This paper introduces an adaptive sliding mode control approach for stabilizing and tracking trajectories with a quadrotor. The closed-loop control system comprises three main components: the first addresses altitude and attitude stabilization as well as trajectory tracking. The second component is dedicated to parameter estimation, particularly mass estimation. The third part focuses on observing full states. The control method considers disturbances, sensor noise, and parameter uncertainties, with sliding mode control laws and observer adaptation designed based on the Lyapunov stability principle. Numerical simulations demonstrate the efficacy of the proposed control technique.</p

    Black-Box System Identification for Low-Cost Quadrotor Attitude at Hovering

    No full text
    The accuracy of dynamic modelling of unmanned aerial vehicles, specifically quadrotors, is gaining importance since strict conditionalities are imposed on rotorcraft control. The system identification plays a crucial role as an effective approach for the problem of the fine-tuning dynamic models for applications such control system design and as handling quality evaluation. This paper focuses on black-box identification, describing the quadrotor dynamics based on experimental setup through sensor preparation for data collection, modelling, control design, and verification stages.</p

    A Comprehensive Review of Recent Research Trends on Unmanned Aerial Vehicles (UAVs)

    No full text
    The growing interest in unmanned aerial vehicles (UAVs) from both the scientific and industrial sectors has attracted a wave of new researchers and substantial investments in this expansive field. However, due to the wide range of topics and subdomains within UAV research, newcomers may find themselves overwhelmed by the numerous options available. It is therefore crucial for those involved in UAV research to recognize its interdisciplinary nature and its connections with other disciplines. This paper presents a comprehensive overview of the UAV field, highlighting recent trends and advancements. Drawing on recent literature reviews and surveys, the review begins by classifying UAVs based on their flight characteristics. It then provides an overview of current research trends in UAVs, utilizing data from the Scopus database to quantify the number of scientific documents associated with each research direction and their interconnections. This paper also explores potential areas for further development in UAVs, including communication, artificial intelligence, remote sensing, miniaturization, swarming and cooperative control, and transformability. Additionally, it discusses the development of aircraft control, commonly used control techniques, and appropriate control algorithms in UAV research. Furthermore, this paper addresses the general hardware and software architecture of UAVs, their applications, and the key issues associated with them. It also provides an overview of current open source software and hardware projects in the UAV field. By presenting a comprehensive view of the UAV field, this paper aims to enhance our understanding of this rapidly evolving and highly interdisciplinary area of research

    Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study

    No full text
    Purpose In the critically ill, hospital-acquired bloodstream infections (HA-BSI) are associated with significant mortality. Granular data are required for optimizing management, and developing guidelines and clinical trials. Methods We carried out a prospective international cohort study of adult patients (≥ 18 years of age) with HA-BSI treated in intensive care units (ICUs) between June 2019 and February 2021. Results 2600 patients from 333 ICUs in 52 countries were included. 78% HA-BSI were ICU-acquired. Median Sequential Organ Failure Assessment (SOFA) score was 8 [IQR 5; 11] at HA-BSI diagnosis. Most frequent sources of infection included pneumonia (26.7%) and intravascular catheters (26.4%). Most frequent pathogens were Gram-negative bacteria (59.0%), predominantly Klebsiella spp. (27.9%), Acinetobacter spp. (20.3%), Escherichia coli (15.8%), and Pseudomonas spp. (14.3%). Carbapenem resistance was present in 37.8%, 84.6%, 7.4%, and 33.2%, respectively. Difficult-to-treat resistance (DTR) was present in 23.5% and pan-drug resistance in 1.5%. Antimicrobial therapy was deemed adequate within 24 h for 51.5%. Antimicrobial resistance was associated with longer delays to adequate antimicrobial therapy. Source control was needed in 52.5% but not achieved in 18.2%. Mortality was 37.1%, and only 16.1% had been discharged alive from hospital by day-28. Conclusions HA-BSI was frequently caused by Gram-negative, carbapenem-resistant and DTR pathogens. Antimicrobial resistance led to delays in adequate antimicrobial therapy. Mortality was high, and at day-28 only a minority of the patients were discharged alive from the hospital. Prevention of antimicrobial resistance and focusing on adequate antimicrobial therapy and source control are important to optimize patient management and outcomes
    corecore